

Shri Shankaracharya Technical Campus, Bhilai (An Autonomous Institute Affiliated to CSVTU Bhilai) Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

	SCHEME OF EXAMINATION									
	B. Tech- 3rd Year				Semester: 5th					
Br	Branch: Computer Science and Eng					neering (Data Science)				
G N		Subject	Periods per week		Scheme of Exam			Total	Credit	
3. IN.	Subject Name	Code	т	L T	D	Theor	Theory/Practica		Marks	$\frac{L+(1+P)}{2}$
			L		Г	ESE	СТ	ТА		,
1	Theory of Computation	CS102501	2	1	-	100	20	30	150	3
2	Computer Network	CS102502	3	0	-	100	20	30	150	3
3	Introduction to Data Science	CS113503	2	1	-	100	20	30	150	3
4	Internet of Things	CS115504	3	0	-	100	20	30	150	3
5	Professional Elective -1	Refer Table -1	3	0	-	100	20	30	150	3
6	Computer Network Lab	CS102591	-	-	2	25	-	25	50	1
7	Data Science Lab	CS113592	-		2	25	-	25	50	1
8	Internet of things Lab	CS115593	-	-	2	25	-	25	50	1
9	Minor Project-1	CS102597	-	-	2	25	-	25	50	1
10	Internship Assessment	CS102598	-	-	2	-	-	25	25	1
11	Constitution of India	CS100596	-	-	-	-	-	25	25	-
	Total			2	10	600	100	300	1000	20

Professional Elective -1					
Sr. No.	Subject Code	Name of Subject			
1.	CS102521	Computer Graphics			
2.	CS102522	Cryptography and Network Security			
3.	CS115523	IoT Architecture & Security			
4.	CS111524	BDA Essentials			
5.	CS109525	Artificial Neural Network			
6.	CS113526	Statistical Foundation for Data Science			
7.	CS102527	Biometrics			
8.	CS102528	Object Oriented Modeling and Design			

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Subject Code CS102501 Theory Of Computation		L = 3	T = 0	P = 0	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination	100	20	30	150	3 Hours
Scheme	Minimum number of class conducted=02	Minimum	Assignments=02		

Course ObjectivesOn successFormal languages and automata theory deals with the concepts of automata, formal languages, Grammar, computability and decidability. The reasons to study Formal Languages and Automata Theory are Automata Theory provides a simple, elegant view of the complex machine that we call a computer .More precisely, the objectives are:On success will be able CO1.Desi strings of a• To give an overview of the perspective of formal languages. • To illustrate finite state machines to solveCO3.Desig strings of c	Course Outcomes sful completion of the course, the student e to: gn finite automata to accept a set of
Formal languages and automata theory deals with the concepts of automata, formal languages, Grammar, computability and decidability. The reasons to study Formal Languages and Automata Theory are Automata Theory provides a simple, elegant view of the complex machine that we call a computer .More precisely, the objectives are:On success will be able CO1.Desi 	sful completion of the course, the student e to: gn finite automata to accept a set of
 Formal languages and automata theory deals with the concepts of automata, formal languages, Grammar, computability and decidability. The reasons to study Formal Languages and Automata Theory are Automata Theory provides a simple, elegant view of the complex machine that we call a computer .More precisely, the objectives are: To give an overview of the theoretical foundations of computer science from the perspective of formal languages. To illustrate finite state machines to solve On success will be able will be able will be able able able able able able able	sful completion of the course, the student e to: gn finite automata to accept a set of
 To give an overview of the theoretical foundations of computer science from the perspective of formal languages. To illustrate finite state machines to solve 	language. rmine whether the given language is
 problems in computing. To explain the hierarchy of problems arising in the computer sciences. To familiarize Regular grammars, context frees grammar. To solve various problems of applying normal form techniques, push down CO4.Desig equivalent Turing machines 	not. gn context free grammars to generate context free language. gn push down automata and the context free grammars and Design chine. nguish between computability and non- lity, Decidability and un-decidability.

UNIT – I: The Theory Of Automata

Introduction to automata theory, Examples of automata machine, Finite automata as a language acceptor and translator, Deterministic finite automata. Non-deterministic finite automata, finite automata with output (Mealy Machine. Moore machine), Finite automata with Epsilon moves, Minimizing number of states of a DFA, My hill Nerode theorem, Properties and limitation of FSM, Application of finite automata. [8Hrs.]

UNIT – II: Regular Expressions

Alphabet, String and Languages, Regular expression, Properties of Regular Expression, Finite automata and Regular expressions, Arden's Theorem, Regular Expression to DFA conversion & vice versa. Pumping lemma for regular sets, Application of pumping lemma, Regular sets and Regular grammar, Closure properties of regular sets. Decision algorithm for regular sets and regular grammar. [7Hrs.]

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

CO1

CO2

Shri Shankaracharya Technical Campus, Bhilai (An Autonomous Institute Affiliated to CSVTU Bhilai)

ne of Teaching & Examination (Effective from 2020-2021 Batch)

UNIT – III: Grammars

Definition and types of grammar, Chomsky hierarchy of grammar, Relation between types of grammars, Context free grammar, Left most & right most derivation trees, Ambiguity in grammar, Simplification of context free grammar, Chomsky Normal From, Greibach Normal From, properties of context free language, Pumping lemma for context free language, Decision algorithm for context tree language. [7Hrs.]

UNIT - IV: Push Down Automata And Turing Machine

Basic definitions, Deterministic push down automata and non-deterministic push down automata, Acceptance of push down automata, Push down automata and context free language, Turing machine model, Representation of Turing Machine, Construction of Turing Machine for simple problem's, Universal Turing machine and other modifications .Church's Hypothesis, , Halting problem of Turing Machine. [7Hrs.]

UNIT – V: Computability

Introduction and Basic concepts, Recursive function, Partial recursive function, Initial functions, Composition of functions, Ackerman's function, Recursively Enumerable and Recursive languages, Decidable and decidable problem, Post correspondence problem, Space and time complexity **[7Hrs.]**

Text Books:

S. No.	Title	Author(s)	Publisher
1	Theory of Computer Science	K.L.P. Mishra and N.	рці
1	(Automata Language & Computation) Chandrasekran		F I II
2	Introduction to Automata theory.	John E. Hopcropt &	Narosa, Publishing
2	Language and Computation	Jeffery D. Ullman	House

Reference Books:

S. No.	Title	Author(s)	Publisher
1	Introduction to Languages and the Theory of Computation	John Martin,	Tata McGraw Hill.
2	Introduction to Formal Languages	Kamala Krithivasan,	2nd Edition, Pearson
	Automata Theory and Computation	Rama R	Education.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

CO4

CO3

CO5

Subject Code CS102502	Computer Network	L = 3	T =	P = 0	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination Scheme	100	20	30	150	3 Hours
	Minimum number of class tests to be	Minimum A	ssignments=02		

UNIT – I: Introduction: History of Computer Network, Examples of Networks: Novell Networks, Arpanet, Internet, Network Topologies WAN, LAN, MAN, PAN,. Applications, networks architecture requirements, ISO-OSI, TCP/IP, XNS, IPX/SPX,

Physical Layer: Transmission media, signal and encoding, asynchronous communications; Narrow band, broad band ISDN and ATM, Packet Switching and Circuit Switching.

UNIT – II: Data link layer : Design issues, framing, error detection and correction techniques with numerical, CRC, Elementary Protocol : stop and wait, Sliding Window, Slip, Data link layer in HDLC, ATM. Multiple Access Protocols, Link Layer Addressing, ARP, DHCP, Ethernet devices – Hubs, Bridges, and Switches.

Medium Access sub layer: ALOHA, MAC addresses, CSMA, CSMA/CD. IEEE 802.X Standard Ethernet, wireless LAN.

UNIT – III: Network Layer : Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks, Router, Routing Table, Internet Protocol (IP) – IPv4 and IPv6, ICMP, Link State Routing, Distance Vector Routing, Hierarchical Routing, RIP, OSPF, BGP, Broadcast and Multicast Routing, MPLS, Mobile IP, IP sec. IPv4 : Classes, Classless, Subneting, Super netting and its numerical

UNIT – IV: Transport Layer: Transport Layer Services – Multiplexing and Demultiplexing, UDP

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai) Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

-Go Back-N and Selective Repeat. **Connection-Oriented Transport**: TCP, Segment Structure, RTT estimation, Flow Control, Connection Management, Congestion Control, TCP Delay Modeling, SSL and TLS. QoS architecture models: IntServ vs DiffServ

UNIT – V: Presentation Layer protocols: AFP, ICA, LPP, NCP, NDR, Telnet **Session Layer protocols**: PAP, PPTP, RPC, SCP

Application Layer: Principles of Network Applications , The Web and HTTP, HTTPS, FTP, Electronic Mail, SMTP, IRC, Video Conferencing, MIME, DNS, Socket Programming with TCP and UDP.

Network Security: Principles of Cryptography, Firewalls, Application Gateway, Attacks and Countermeasures.

Text Books:

S.No.	Title	Author(s)	Publisher
1	Data Communications and Networking	Behrouz A. Forouzan	Third Edition TMH
2	Computer Networking: A Top-Down Approach Featuring the Internet	James F. Kurose and Keith W. Ross	Pearson Education, Third edition, 2006

S. No.	Title	Author(s)	Publisher
1	Computer Networks	Andrew S Tanenbaum	4th Edition. Pearson Education/PHI
2	An Engineering Approach to Computer Networks	S. Keshav	2nd Edition, Pearson Education

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

Subject Code CS113503	Introduction to Data Science	L = 2	T = 1	P = 0	Credits = 3
	ESE	СТ	TA	Total	ESE Duration
Examination Scheme	100	20	30	150	3 Hours
	Minimum number of class tests to be conducted=02			Minimum A	ssignments=02

Course Objectives	Course Outcomes
The objective of the course is aimed to	On successful completion of the course, the student
Provide knowledge, insight into methods and	will be able to:
tools for Preparation and Visualization of the	CO1 Basic Concepts of Data Science
data generated by modern information	CO2 Understanding of reading data and manipulation
systems and also to impart necessary	CO3 understand data cleaning , dimentionality
knowledge of the mathematical foundations	reduction
needed for data science and develop	CO4 understand and analyse data
programming skills required to build data	CO5 use visualization of data to capture data
science applications.	insight and build model

UNIT-1: Introduction to data science, Evolution of Data science, Stages in Data science project, Facets of data, Data Science Project's Lifecycle, Web APIs, Open Data sources, Data APIs, Web Scrapping, Relational Databases access to process/access data.

UNIT-2 Introduction to Programming : Basic programming in python: list, string, dictionary, array and tuples. Indexing, slicing, iterating and other basic operations. Data Science Toolkits using Python: Matplotlib, NumPy, Scikit-learn, NLTK **Numpy:** creating arrays, arrays manipulation, reshape, dimension, broadcasting, reading and writing array data on files. **Pandas:** Series and Data frames. Reading files(.xlsx,.csv,.txt) in data frame. Row and index objects, function by elements, function by rows and columns, statistical functions, sorting and ranking, correlation and covariance

UNIT-3: Data cleaning and preprocessing Data Collection strategies: web scrapping tools, handling missing values; Data imputation techniques, data transformation techniques: Data Smoothing, Attribution Construction, Data Generalization ,Data Aggregation, Data Discretization, Data Normalization. Data Reduction techniques: Dimensionality reduction, Numerosity reduction, data cube aggregation, data compression, discretization operation

UNIT-4: Exploratory data analysis Exploratory Analysis: Introduction to statistics used in data science, Central tendencies and distributions, Variance Descriptive-Mean, Standard Deviation, Skewness and Kurtosis, statistical summary of categorical and numerical data, data dispersion: range , interquartile range ,variance, standard deviation, coefficient of variation. data distribution: Continuous and Normal distributions. Frequency table: two-way table with joint, conditional and marginal probability. Pearson correlation.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

UNIT-5 Data Visualization and model building: Introduction, Types of data visualization, A Simple Interactive Chart, Set the Properties of the Plot, matplotlib, Bar chart, scatter chart histogram, pie chart Working with Multiple Figures and Axes, Adding Text, adding a Grid, adding a Legend, Saving the Charts. Seaborn library: Box and Whiskers plot for numerical and categorical variables, grouped plotting. Pairwise plot. Overview of Machine learning concepts – Over fitting and train/test splits, Types of Machine learning – Supervised, Unsupervised, Reinforced learning. Building a basic model with supervised machine learning algorithm: linear regression, logistic regression, support vector. (7Hrs)(7Hrs)

Text Books:

S.No.	Title	Author(s)	Publisher
1	Deep Learning	Ian Goodfellow, Yoshua Bengio and Aaron Courville	MIT Press
2	Data Science from Scratch: First Principles with Python	Joel Grus	O'Reilly Media
3	Doing Data Science, Straight Talk From The Frontline	Cathy O' Neil and Rachel Schutt	O'Reilly
4	Mining of Massive Datasets	Jure Leskovek, Anand Rajaraman and Jeffrey Ullman	Cambridge University Press

S. No.	Title	Author(s)	Publisher
1	Machine Learning	Jeeva Jose	Khanna Publishers
2	Data Sciences	Jain V.K	Khanna Publishers
3	Big Data and Hadoop	Jain V.K	Khanna Publishers
4	Machine Learning	Chopra Rajiv	Khanna Publishers
5	Practical Statistics for Data Scientists	Peter Bruce, Andrew Bruce, Peter Gedeck	O'Reilly

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Subject Code CS115504	Internet of Things	L = 3	T = 0	P = 2	Credits = 3
	ESE	СТ	ТА	Total	ESE Duration
Examination Scheme	100	20	30	150	3 Hours
	Minimum number of class tests to be conducted = 02			Minimum A	ssignments = 02

Course Objectives	Course Outcomes
The objective of this course is • To understand Concepts, design and	On successful completion of the course, the student will be able to:
characteristics of IoT.	Internet of Things.
• To understand Architecture of IoT.	CO2. Students will familiar with IoT Architecture
• To understand basic protocols of IoTs.	CO3. Students will ready to Analyze basic
• To understand challenges and	protocols in wireless sensor network
applications of IoTs.	CO4. Students will be capable to design IoT
• To develop IoT applications using	applications in different domain and be able
Tools.	to analyze their performance
	CO5. Capable to implement basic IoT
	applications on embedded platform

Unit 1: Introduction to Internet of Things: Origin of Terminology IoT, Applications of IoT, Characteristics, Implementation Issues, IoT Architecture, IoT Levels, Connectivity Layers, Interoperability in IoT, associated technologies with IoT (M2M, Telemedicine, Big Data, Cloud, Smart Grid, IoV, MANET, VANET, CPS, SDN, 3G/4G/5G), Challenges in IoT, IoT vs WoT, IoT vs M2M, IoT Network Configurations.

Unit 2: Connectivity: IoT Network Configurations , Gateway Prefix Allotment, Gateways , Multi-homing , IPv4, IPv6, IPv4 versus IPv6, RPL **Data Protocol:** MQTT, CoAP, AMQP, DDS, XMPP.

Communication Protocols: IEEE Standards 802.3, 802.11 and 802.15 and their versions, Z Wave, Bluetooth, ZigBee, 6LowPAN, HART and Wireless HART, NFC, RFID, Software-Defined Networking

Unit 3: Sensors: Definition, Property of Sensors, Types of sensors:- Transducers, Temperature Sensors, Humidity **Sensors**. Pressure Sensors. Proximity Sensors. Level Sensors. Accelerometers. Gyroscope. Gas Sensors. etc., Sensors Classes

Actuation: Actuator, Actuator Types :- Hydraulic Pneumatic, Electrical, Thermal/ Magnetic, Mechanical, Soft Actuators, Shape memory polymer (SMP)

Types of Motor Actuators and their working- Servo motor, Stepper motor, Hydraulic motor, Solenoid Relay, AC motor

Unit 4: Introduction to Arduino Programming – : Operators in Arduino, Control Statement, Loops, Arrays, String, Math Library, Random Number, Interrupts, Integration and calibration of Sensors and Actuators with Arduino:

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Implementation of IoT: Introduction to Arduino and NodeMCU (ESP8266) board, Programming NodeMCU using Arduino, Connectivity of Sensors and Actuators with NodeMCU, Introduction to Python programming, Introduction to Raspberry PI.

Unit 5: Cloud Computing Fundamentals: Recent Trends in Computing, Evolution of Cloud Computing, Evolution of Cloud Computing, Business Advantages, Components Service Models: Software-as-a-Service(SaaS), Platform-as-a-Service (PaaS), Infrastructure-as-a-Service (IaaS), Multi-cloud, Inter-cloud, Cloud Computing Service Management and Security, Case studies: Open stack, Microsoft Azure, Amazon Elastic Compute Cloud (EC2)

S. No.	Title	Author(s)	Publisher
1	Internet of Things: A Hands-On	Vijay Madisetti,	Orient Blackswan Private
1	Approach	Arshdeep Bahga	Limited - New Delhi
2	Fundamentals of Wireless Sensor	Waltenegus Dargie,	Willow Publication
	Networks: Theory and Practice	Christian Poellabauer	whiley Publication
2	Internet of Things with Arduino	Macro Schwar	Dacket Dublishing I td
3	Cookbook	Macio Scilwai	I acket I ublishing Ltu

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Subject Code CS102591	Computer Network	L =	T =	P = 2	Credits = 1
_	ESE	СТ	ТА	Total	ESE Duration
Examination Scheme	100 20 30		150	3 Hours	
	Minimum number of class tests to be conducted=02			Minimum A	ssignments=02

	Course Objectives	Course Outcomes		
To Pro Compu and the	ovide students the basic knowledge of iter Networking, tools used, their purpose eir connectivity based on requirements.	On completion of this course the student will be able to setup and configure various networking hardware and software. They will also be able to identify the basic faults and can resolve.		
List of	experiments to be conducted in Computer Netwo	ırk Lab.		
Prerequ	uisite			
1.	Introduction to cables, connectors and topol	ogies.		
2.	Demonstration of Switch, Hub, Router and the	heir uses and types.		
3.	Installation of UTP, Co-axial cable, Cross cab	le, parallel cable.		
4.	Case Study of Ethernet (10base5, 10base2, 1	0 base T)		
5.	Case Study of various Wireless technologies	available.		
<u>Experi</u>	<u>ments</u>			
1.	 Basic network command and Network configuration commands like ping, netstat, hostname, nslookup, route, arp, tracert, ipconfig, ARP etc. 			
2.	To enable secured / unsecured file sharing, o	levice sharing over network.		
3.	Installation and working of Remote Desktop	and other third party related software's.		
4.	To setup IP and other values avoiding DHCP.			
5.	Use of Subnet mask to create two or more d	ifferent logical network in same lab.		
6.	Installation and working with IIS Server.			
7.	Basic Configuration of Home Router/Modem	1		
8.	Introduction to Server administration.			
9.	Basic Chat Program in Java using TCP.			
6.	Basic Chat Program in Java using UDP.			

S.No.	Title	Author(s)	Publisher
1	Data Communications and Networking	Behrouz A. Forouzan	Third Edition TMH
2	Computer Networking: A Top-Down Approach Featuring the Internet	James F. Kurose and Keith W. Ross	Pearson Education, Third edition, 2006

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

Subject Code CS113592	DATA SCIENCE LAB	L =	T =	P = 2	Credits = 1
Examination Scheme	ESE	СТ	ТА	Total	ESE Duration
	25		25	50	

Course Objectives	Course Outcomes
The objective of this course is to impart necessary knowledge of the mathematical foundations needed for data science and develop programming skills required to build data science applications.	On successful completion of the course, the student will be able to: CO1 Basic Concepts of Data Science CO2 Demonstrate understanding of the mathematical foundations needed for data science. CO3 Collect, explore, clean, munge and manipulate data. CO4 Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks and clustering. CO5 Build data science applications using Python based toolkits.

List of Experiments

- 1. Write a program in Python to predict the class of the flower based on available attributes.
- 2. Write a program in Python to predict if a loan will get approved or not.
- 3. Write a program in Python to predict the traffic on a new mode of transport.
- 4. Write a program in Python to predict the class of user.
- 5. Write a program in Python to indentify the tweets which are hate tweets and which are not.
- 6. Write a program in Python to predict the age of the actors.
- 7. Mini project to predict the time taken to solve a problem given the current status of the user
- 8 . Write programs to understand the use of Numpy's Shape Manipulation, Array Manipulation, vectorization.
- 9. Write programs to understand the use of Numpy's Structured Arrays, Reading and Writing Array Data on Files.

10. Write programs to understand the use of Matplotlib for Simple Interactive Chart, Set the Properties of the Plot, matplotlib and NumPy.

11. Write programs to understand the use of Matplotlib for Working with Multiple Figures and Axes, Adding Text, Adding a Grid, Adding a Legend, Saving the Charts.

12. Write programs to understand the use of Matplotlib for Working with Line Chart, Histogram, Bar Chart, Pie Charts.

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

S.No.	Title	Author(s)	Publisher
1	Python Crash Course: A Hands-On, Project-Based Introduction to Programming	Eric Matthes	William Pollock
2	Data Science from Scratch: First Principles with Python	Joel Grus	O'Reilly Media

S. No.	Title	Author(s)	Publisher
1	Machine Learning	Jeeva Jose	Khanna Publishers
2	Data Sciences	Jain V.K	Khanna Publishers
3	Fluent Python	Luciano Ramalho	O'Reilly Media
4	Machine Learning	Chopra Rajiv	Khanna Publishers

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

Subject Code CS115593	Internet of Things Lab	L =	Τ=	P =	Credits =	
Examination Scheme	ESE	СТ	TA	Total	ESE Duration	
	25 - 25		50			
	Minimum number of class tests to be conducted =			Minimum A	ssignments =	

Course Objectives	Course Outcomes
The objective of this course is	On successful completion of the course, the student will be able to:
 To understand Concepts, design and characteristics of IoT. To understand Architecture of IoT. 	CO1. Students will familiar with the concepts of Internet of Things.CO2. Students will familiar with IoT Architecture
To understand basic protocols of IoTs.To understand challenges and	CO3. Students will ready to Analyze basic protocols in wireless sensor network
applications of IoTs.To develop IoT applications using Tools.	CO4. Students will be capable to design IoT applications in different domain and be able to analyze their performance
	CO5. Capable to implement basic IoT applications on embedded platform

Note: Students need to perform at least 10 experiments. Use of sensors and actuators are not restricted as provided. Student may use any other components also.

- 1. Introduction to various sensors and actuators.
 - a) PIR Motion Sensor.
 - b) Rain Drop Sensor.
 - c) Moisture Sensor.
 - d) Temperature Sensor.
 - e) Touch Sensor.
 - f) Infrared Sensor.
- 2. Acquaintance with NodeMCU and perform essential programming establishment.
- 3. Connect LED/Buzzer with NodeMCU and compose a program to turn ON LED for 1 sec later at regular intervals.
- 4. Perform Experiment to use NodeMCU ESP8266 as HTTP Server using WiFi Access Point (AP) mode.
- 5. Perform Experiment for Controlling LED through an HTTP page Using NodeMCU Station Mode (STA).

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

- g) RFID Sensor.
- h) Ultrasonic Sensor.
- i) Bluetooth Module.
- i) Wi-Fi Module.
- k) LED/OLED
- 1) Servo Motor.

- 6. Interact with DHT11 sensor with NodeMCU and compose a program to print temperature and humidity readings on screen.
- 7. Communicate OLED with NodeMCU and compose a program to print temperature and moisture readings on it.
- 8. Communicate Bluetooth with Arduino/ NodeMCU and compose a program to send sensor information to cell phone utilizing Bluetooth.
- 9. Connect Bluetooth with Arduino/ NodeMCU and compose a program to turn LED ON/OFF when '1'/'0' is sent from cell phone utilizing Bluetooth.
- 10. Compose a program on NodeMCU to transfer temperature and stickiness information to thingspeak,Blynk or any other free cloud.
- 11. Compose a program on NodeMCU to fetch temperature and moistness information from thingspeak cloud and display it using OLED.
- 12. Creating a webpage and display the values received from sensors through NodeMCU.
- 13. Study of other IoT Boards and components available. (Student Activity).

S. No.	Title	Author(s)	Publisher
4	Internet of Things: A Hands-On	Vijay Madisetti,	Orient Blackswan
	Approach	Arshdeep Bahga	Private Limited - Delhi
2	Fundamentals of Wireless Sensor	Waltenegus Dargie,	Willow Dublication
2	Networks: Theory and Practice	Christian Poellabauer	whiley Fublication
3	Internet of Things with Arduino	Macro Schwar	Packet Publishing I td
3	Cookbook		

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

Subject Code CS113526	Statistical Foundation for Data Science	L = 3	T =	P = 0	Credits = 2
Examination Scheme	ESE	СТ	ТА	Total	ESE Duration
	100 20 30		30	150	3 Hours
	Minimum number of class tests to be conducted=02			Minimum A	ssignments=02

Course Objectives	Course Outcomes
The objective of the course is aimed learn the probability distributions and density estimations to perform analysis of various kinds of data. Also to explore the statistical analysis techniques using Python and R programming languages.	 On successful completion of the course, the student will be able to: CO1: Implement statistical analysis techniques for solving practical problems. CO2: Apply statistical analysis on variety of data. CO3: Perform multi-dimensional scaling. CO4: Perform appropriate statistical tests using R. CO5: Analyze data using python

UNIT 1 Probability Theory: Sample Spaces-Events-Axioms–Counting–Conditional Probability and Bayes' Theorem, The Binomial Theorem – Random variable and distributions: Mean and Variance of a Random variable, Binomial-Poisson-Exponential and Normal distributions. Curve Fitting and Principles of Least Squares Regression and correlation. (7Hrs) **CO1**

UNIT 2 Sampling Distributions & Descriptive Statistics: The Central Limit Theorem, distributions of the sample mean and the sample variance for a normal population, Sampling distributions (Chi Square, t, F,z).Test of Hypothesis-Testing for Attributes. (7Hr) **CO2**

UNIT 3 Mean of Normal Population – One-tailed and two-tailed tests, F-test and Chi-square test Analysis of variance ANOVA – One way and two way classifications. Tabular data Power and the computation of sample size- Advanced data handling-Multiple regression Linear models- Logistic regression-Rates and Poisson regression-Nonlinear curve fitting. (7Hrs)**CO3**

UNIT 4 Linear Algebra: Vector space, subspaces, linear dependence and independence of vectors, matrices, projection matrix, orthogonal matrix, idempotent matrix, partition matrix and their properties, quadratic forms, systems of linear equations and solutions; Gaussian elimination, eigen values and eigen vectors, determinant, rank, nullity, projections, LU decomposition, singular value decomposition. CO4 7 Hrs

UNIT 5 Calculus and Optimization: Functions of a single variable, limit, continuity and differentiability, Taylor series, maxima and minima, optimization involving a single variable.

(8Hrs) CO5

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

S.No.	Title	Author(s)	Publisher
	Introduction to Probability and		Academic Press
1	Statistics for Engineers and	Sheldon M. Ross	
	Scientists		
2 Intr	Introductory statistics with P	Dolgoord Peter	Springer Media Science
	introductory statistics with K	Daigaalu, I etei	& Business
2	A Handbook of Statistical Analysis	Drain S Evaritt	Apple Academic Press
5	Using R	Dialii S.Evenu	
4	Mathematical Statistics	J.K.Goyal	Krishna Prakashan

S. No.	Title	Author(s)	Publisher
1	R Cook book	Paul Teetor	O'Reilly

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

heme of Teaching & Examination (Effective from 2020-2021 Batch)

Subject Code CS102527	Biometrics	L = 3	T =	P = 0	Credits = 2
Examination Scheme	ESE	СТ	TA	Total	ESE Duration
	100	20	30	150	3 Hours
	Minimum number of class tests to be conducted=02			Minimum A	ssignments=02

Course Objectives	Course Outcomes
Course Objectives The basic objective in offering this course is to study the state-of-the-art in biometrics technology can explore the way to improve the current technology. The students can learn and	Course Outcomes On successful completion of the course, the student will be able to: 1. Understand the basic definition of 'Biometric Recognition' and the distinctive of this form of biometrics. 2. Be able to state precisely what functions these systems perform. 3. Be able to draw a system-level diagram for any biometric system and discuss its components.
implement various biometrics technologies using advanced algorithm.	 4. Be able to solve verification, identification, and synthesis problems for a variety of biometrics such as fingerprint, face, iris, hand gestures and cryptography. 5. Be able to use the biometrics ingredients of existing system to obtain a given security goal. 6. Judge the appropriateness of proposal in research papers for a given applications. 7. Be able to design a biometric solution for a given application.

Unit I: Introduction of Biometrics Biometrics: definition, history, basic working architecture, types; Performance measures of biometrics; applications and benefits of biometrics; design of biometrics; biometric identification versus verification.

Unit II: Face and Iris Biometrics Background of face and iris recognition; Face recognition methods: Eigen face methods, contractive transformation method; Challenges of face biometrics; Design of iris biometrics: image segmentation, image preprocessing, determination of iris region; Advantages and disadvantages of face and iris biometrics.

Unit III: Fingerprint and Sign Language BiometricsFingerprint matching: image acquisition, image enhancement and segmentation, image binarization, minutiaeextraction and matching; Sign language biometrics: Indian sign language (ISL) biometrics, SIFT algorithm, advantages and disadvantages of ISL and fingerprint biometrics.

Unit IV: Biometric Cryptography and Privacy Enhancement Introduction to biometric cryptography; general purpose cryptosystems; Cryptographic algorithms: DES and RSA; Privacy concerns and issues related to biometrics; biometrics with privacy enhancement; soft biometrics; comparison of various biometrics; Identity

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

and privacy.

Unit V: Scope of Biometrics and Biometric Standards Multimodal biometrics: basic architecture and fusion scheme, application, example of AADHAAR; scope and future market of biometrics; role of biometrics in enterprise and border security; DNA biometrics; biometric standards; biometric APIs.

S.No.	Title	Author(s)	Publisher	
1		Dr G R Sinha and	Wiley India Dublications	
1	Biometrics. concepts and applications	Sandeep B. Patil	whey mula rubications	
2	Introduction to biometrics	Anil K Jain, Arun Ross	Springer	
2		and Karthik Nandakumar		
	Biometrics Identity varification in a	Samir nanawati, Michael		
3	biometrics identity vermication in a	Thieme and Raj	US edition of Wiley India	
		Nanawati		

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

(An Autonomous Institute Affiliated to CSVTU Bhilai)

Scheme of Teaching & Examination (Effective from 2020-2021 Batch)

Subject Code CS102522	Cryptography & Network Security	L = 2	T = 1	P = 0	Credits = 3
Examination Scheme	ESE	СТ	TA	Total	ESE Duration
	100 20 30		150	3 Hours	
00.000	Minimum number of class tests to be conducted=02			Minimum A	ssignments=02

Course Objectives	Course Outcomes
 Explain the objectives of information security, importance and application of each of confidentiality, integrity, authentication and availability. Understand various cryptographic algorithms. Understand the basic categories of threats to computers and networks. Describe public-key cryptosystem and enhancements made to IPv4 by IPSec. Understand Intrusions and intrusion detection. Discuss the fundamental ideas of public-key cryptography and Web security and Firewalls. Generate and distribute a PGP key pair and use the PGP package to send an 	 On successful completion of the course, the student will be able to: Student will be able to understand basic cryptographic algorithms, message. Student will be able to understand web authentication and security issues. Ability to identify information system requirements for both of them such as client and server. Ability to understand the current legal issues towards information security.
encrypted eman message.	

UNIT – I Security Concepts: Introduction, The need for security, Security approaches, Principles of security, Types of Security attacks, Security services, Security Mechanisms.

Cryptography Concepts and Techniques: Introduction, plain text and cipher text, substitution techniques, transposition techniques, encryption and decryption, symmetric and asymmetric key cryptography, possible types of attacks.

UNIT – II Symmetric key Ciphers: Block Cipher principles, DES, AES, Blowfish, RC5, IDEA, Block cipher operation, Stream ciphers, RC4.

Asymmetric key Ciphers: Principles of public key cryptosystems, RSA algorithm, Diffie-Hellman Key Exchange, Knapsack Algorithm.

UNIT – III Cryptographic Hash Functions: Message Authentication, Secure Hash Algorithm (SHA-512).

Message authentication codes: Authentication requirements, HMAC, CMAC, Digital signatures.

Key Management and Distribution: Symmetric Key Distribution Using Symmetric & Asymmetric Encryption, Distribution of Public Keys, Kerberos, Public – Key Infrastructure.

UNIT – IV Transport-level Security: Web security considerations, Secure Socket Layer and Transport Layer Security, HTTPS, Secure Shell (SSH).

Wireless Network Security: Wireless Security, Mobile Device Security, IEEE 802.11 Wireless LAN,

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards

देव तु केवल्यम्"

IEEE 802.11i Wireless LAN Security.

UNIT - V E-Mail Security: Pretty Good Privacy, S/MIME, MIME

IP Security: IP Security overview, IP Security architecture, Authentication Header, combining security associations, Internet Key Exchange

Web Security: TLS, SSL etc., Secure Electronic Set (SET), Firewalls & its Types, Introduction to IDPS; Risk Management; Security Planning.

Text Books:

S.No.	Title	Author(s)	Publisher
1	Cryptography and Network Security - Principles and Practice	William Stallings	Pearson Education, 6th Edition
2	Cryptography and Network Security	Atul Kahate	Mc Graw Hill, 3rd Edition

S. No.	Title	Author(s)	Publisher
1	Cryptography and Network Security	C K Shyamala, N Harini, Dr T R Padmanabhan	Wiley India, 1st Edition.
2	Cryptography and Network Security	Forouzan Mukhopadhyay	Mc Graw Hill, 3rd Edition
3	Information Security Principles, and Practice	Mark Stamp	Wiley India
4	Principles of Computer Security	WM. Arthur Conklin, Greg White	
5	Introduction to Network Security	Neal Krawetz	CENGAGE Learning
6	Network Security and Cryptography	Bernard Menezes	CENGAGE Learning

			1.00	Applicable for
Chairman (AC)	Chairman (BoS)	Date of Release	Version	AY 2021-22 Onwards